
Metas.UncLib—a measurement uncertainty calculator for advanced problems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2012 Metrologia 49 809

(http://iopscience.iop.org/0026-1394/49/6/809)

Download details:

IP Address: 193.5.216.100

The article was downloaded on 03/05/2013 at 07:59

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0026-1394/49/6
http://iopscience.iop.org/0026-1394
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

IOP PUBLISHING METROLOGIA

Metrologia 49 (2012) 809–815 doi:10.1088/0026-1394/49/6/809

Metas.UncLib—a measurement
uncertainty calculator for advanced
problems
M Zeier, J Hoffmann and M Wollensack

Federal Office of Metrology METAS, Lindenweg 50, CH-3003 Bern-Wabern, Switzerland

E-mail: hf@metas.ch

Received 8 June 2012, in final form 5 October 2012
Published 7 November 2012
Online at stacks.iop.org/Met/49/809

Abstract
Metas.UncLib is a software library that facilitates the linear propagation of uncertainties
through a measurement model. It is able to handle complex-valued and multivariate quantities
and supports higher mathematics. It is therefore able to deal with advanced metrological
problems that require, e.g., matrix manipulations. The software is optimized for short
computation times and low memory use.

(Some figures may appear in colour only in the online journal)

1. Introduction

Metas.UncLib is a general purpose library for measurement
uncertainty evaluation. It has been created as part of metrology
software [1] for the vector network analyzer (VNA). VNAs
are used for measurements of the fundamental radiofrequency
and microwave quantities reflection and transmission. These
quantities are complex-valued and require a multivariate
treatment for the calculation of the measurement uncertainty
[2, 3]. The measurements are based on a multi-step
measurement process, which involves the determination of
correction coefficients of the VNA before one can measure
the actual device under test. This leads to a fairly
elaborate measurement model that requires matrix and vector
computations. Since the measurements are usually repeated
for a few hundred frequency points, a relatively large amount
of data is created. Computation time and memory use of the
calculations are thus important as well.

There are many software solutions available for the
evaluation of measurement uncertainty, see e.g. [4]. Only a
few of the packages support complex-valued quantities, see
e.g. [5, 6], and are available as libraries with a license model
that allows unrestricted free use. To our knowledge none of
them would have fulfilled our performance requirements.

Metas.UncLib has been developed with the above-
mentioned specifications in mind. The result is a software
library that is applicable to advanced problems of measurement

uncertainty evaluation, not limited to radiofrequency and
microwave measurements.

Section 2 gives an overview of the features of
Metas.UncLib; sections 3 and 4 provide implementation details
about the linear uncertainty propagation module and storage,
respectively. In section 5 the performance of Metas.UncLib is
discussed. In section 6 the use of the software is illustrated
with two examples.

2. Features

Metas.UncLib is written in C# within the .NET framework
[7]. It supports the determination of the measurement
uncertainty in accordance with the guidelines of the ISO-
GUM [3, 8]. The user specifies a measurement model, which
relates basic input quantities to the desired output quantities
through measurement equations. The basic input quantities
are characterized by probability density functions (pdf), the
standard deviations of which are interpreted as the standard
uncertainties. The library provides three different modes of
uncertainty propagation, two of them based on approximations
of the measurement model and of the pdfs and a third one based
on a numerical method.

The linear uncertainty propagation (LinProp module)
supports the propagation of the variances of the input pdfs
through a linearized measurement model. The method is

0026-1394/12/060809+07$33.00 © 2012 BIPM & IOP Publishing Ltd Printed in the UK & the USA 809

http://dx.doi.org/10.1088/0026-1394/49/6/809
mailto: hf@metas.ch
http://stacks.iop.org/Met/49/809

M Zeier et al

described in detail in [3, 8], the former covering a matrix
formulation that is particular suitable for multivariate linear
uncertainty propagation. Details of the implementation of
this module are given in sections 3 and 4. As of the current
version (1.3.4) of Metas.UncLib the implementation of the
other two modes is still experimental and not optimized for
performance. These modes will therefore not be discussed
further in this paper.

Metas.UncLib supports basic math functions as well as
matrix and vector calculus for real-valued and complex-
valued quantities. It is possible to specify correlations
between input quantities and it automatically accounts for
the correlations in all calculations. It thus fully supports
the multivariate treatment of measurement uncertainty, as
it is described in [3]. It supports algebraic operations,
such as matrix decompositions and linear least squares,
and numerical techniques, such as interpolation and fast
Fourier transforms. This functionality is extended as the
development activities continue. Metas.UncLib provides
advanced storage mechanisms in ASCII and in binary format
and it can be used from other applications through .NET
or through COM [9]. The library itself does not provide a
graphical user interface, but with its interface it is possible
to use it from other applications such as MATLAB [10].
This feature adequately compensates for the lack of a
graphical user interface and offers a considerable degree of
flexibility.

3. Implementation of linear uncertainty propagation

The LinProp module is based on a concept called GUM
Tree [11–13]. This concept uses automatic (or algorithmic)
differentiation (AD), see [14] and references therein, to
calculate sensitivity coefficients. AD exploits the fact that
every mathematical expression in a computer program, no
matter how complicated, will be executed as a series of
elementary arithmetic operations (+, −, ×, ÷) and elementary
functions (sin, log, exp, etc). The derivatives of these
elementary operations are explicitly programmed and with the
chain rule the derivatives are updated at each elementary step
of the calculation. In this way the derivatives of a complicated
expression are literally built up in an automatic way. There are
different possibilities to implement this technique in software,
see also [15], the most straightforward and elegant of which
is based on operator overloading. Operator overloading is
used to redefine functions and operators to act differently
depending on the type of input arguments. It is a feature of
modern object oriented programming languages and provides
an elegant way to hide the complexity of calculations from the
user. In the GUM Tree concept each measurement quantity is
represented by an object, which contains not only the value
of the quantity but also the necessary information to propagate
uncertainties, in particular the sensitivities with respect to basic
input quantities. In [13] the term uncertain number was coined
for such an object; here it will be called subsequently a LinProp
object. The elementary operations acting on LinProp objects
are overloaded to implement the AD mechanism. This keeps
the sensitivity coefficients automatically updated, while the

user performs calculations with LinProp objects as if they were
ordinary numbers. This is demonstrated with the examples in
section 6.

3.1. General formalism and notation

In this section we briefly repeat the general formalism of
multivariate linear uncertainty propagation (more details can
be found in [3, 16]). The notation follows [3], upper
case symbols are used for the physical quantity and the
corresponding random quantity whereas the estimates are
denoted by the same symbols but in lower case. Vector and
matrix quantities are in bold face type.

The term multivariate uncertainty propagation refers to
the joint treatment of several measurands. Multiple output
quantities are related to several input quantities through a
measurement model that can be written as

Z1 = f1(X1, X2, X3, . . .)

Z2 = f2(X1, X2, X3, . . .)

Z3 = f3(X1, X2, X3, . . .)
...

...
...

or more compactly using vectors

Z = f(X). (1)

Expression (1) relates the vector of input quantities X to the
vector of output quantities Z.

The estimate of X is denoted as x. The uncertainties
associated with x are encoded in an uncertainty matrix Ux

that is sometimes also referred to as the variance–covariance
matrix

Ux =

u11 u12 u13 . . .

u21 u22 u23 . . .

u31 u32 u33 . . .
...

...
...

. . .

with
uij = u(xi, xj) = u(xi)u(xj)r(xi, xj),

where u(xi) denotes the standard uncertainty associated with
xi and r(xi, xj) is the correlation coefficient between xi and
xj . The diagonal elements of Ux are thus the squared
standard uncertainties associated with the components of x

whereas the off-diagonal elements contain the information
about correlation between the components of x.

The sensitivities of the components of Z with respect to
the components of X, evaluated at X = x, are expressed as a
matrix of partial derivatives Jz,x that is sometimes referred to
as a Jacobian matrix

Jz,x =

∂z1
∂x1

∂z1
∂x2

∂z1
∂x3

. . .
∂z2
∂x1

∂z2
∂x2

∂z2
∂x3

. . .
∂z3
∂x1

∂z3
∂x2

∂z3
∂x3

. . .

...
...

...
. . .

 .

The notation ∂zi/∂xj is used here and in the following as a
short form for ∂Zi/∂Xj evaluated at Xj = xj .

810 Metrologia, 49 (2012) 809–815

Metas.UncLib—a measurement uncertainty calculator for advanced problems

Linear propagation of the uncertainties in x to the
uncertainties in z can finally be expressed as a matrix
multiplication

Uz = Jz,xUxJ ′
z,x (2)

with the prime denoting the transposed matrix.
For the discussion that follows, it is necessary to

distinguish between two types of quantities, basic and derived.
Basic quantities are fundamental in the sense that they cannot
just be replaced by a model and traced back further to more
fundamental quantities. Basic quantities will simply have
a value and a measurement uncertainty assigned. Derived
quantities on the other hand have dependences on other
quantities through a measurement model. Any intermediate
or final result of a calculation is hence a derived quantity. It is
part of the modelling process to decide whether a quantity is
basic or if it depends on other more fundamental quantities.
The level of detail in a measurement model is determined
by various factors such as feasibility, available information,
reasonable effort, resources etc.

The quantity Z in equation (1) is obviously a derived
quantity. X on the other hand could either be derived (based
on another model) or basic. For the sake of clarity we will
assume in the rest of the paper that X denotes basic quantities,
whereas Z and Y are derived quantities.

3.2. LinProp objects

LinProp objects contain three fields of information:

(i) The value (estimate) of the quantity (VAL).
(ii) a vector that identifies the dependences on basic quantities

(DEPS). The elements of this vector are globally unique
identifiers [17] of the basic quantities denoted by ID.

(iii) a vector of sensitivities with respect to the basic quantities
(SENS).

These fields in the LinProp objects are evaluated at each step of
the calculation when processing the measurement model from
the basic to the output quantities. VAL is simply calculated
by performing the arithmetic or functional operation on the
value(s) of the input object(s). DEPS is updated by selecting
the union of the DEPS vectors of the input objects, suppressing
doubly occurring IDs. SENS is updated by applying the chain
rule.

A simple example of a multidimensional measurement
model is

Z1 = X1 cos(X2),

Z2 = X1 sin(X2). (3)

Its decomposition into elementary steps is shown graphically
in figure 1. Each node in the figure represents an elementary
operation. Z1 and Z2 are related to the basic quantities (X1 and
X2) through the quantities Y1 and Y2. The derived quantities
Y1, Y2, Z1 and Z2 are encoded in software as LinProp objects.
As an example z1 contains the following LinProp fields:

(i) VAL(Z1) = z1

(ii) DEPS(Z1) = [ID(X1) ID(X2)]
(iii) SENS(Z1) = Jz1,x = [∂z1/∂x1 ∂z1/∂x2].

x1

x2 y1

y2

z2

z1

y1 = cos(x2)

y2 = sin(x2)

z1 = x1y1

z2 = x1y2

Figure 1. Graphical decomposition of measurement model (3).

It is important to note two things: first, it is not necessary
to store actual uncertainties in the LinProp objects. With
the knowledge of the sensitivities with respect to the basic
quantities and the uncertainties associated with the basic
quantities themselves it is possible to calculate uncertainties
on demand. Second, correlations occur due to common
influences. Thus by keeping track of the dependences the
system automatically takes care of correlations.

The squared standard uncertainty associated with, e.g., z1

in our example above can be calculated as

u2(z1) =
(

∂z1

∂x1
u(x1)

)2

+

(
∂z1

∂x2
u(x2)

)2

and the covariance between z1 and z2 as

u(z1, z2) = ∂z1

∂x1

∂z2

∂x1
u2(x1) +

∂z1

∂x2

∂z2

∂x2
u2(x2).

In both cases it is assumed that x1 and x2 are uncorrelated.
More generally it is the expression of linear uncertainty
propagation (2) that can be applied to calculate uncertainties
and correlations on demand with the available information
from the LinProp objects.

3.3. Virtual basic inputs

Basic quantitiesX have a distinguished role as the fundamental
building blocks of a measurement model. In certain cases they
might be correlated. The correlation is caused by common
influences and in principle one can eliminate correlation using
a refined model that includes the common influences as basic
quantities. However, this technique is not always applicable.
In particular the statistical analysis of repeated simultaneous
observation of a set of variables might reveal correlations
between these quantities that cannot be eliminated easily by
refined modelling.

Correlations between basic quantities will result in non-
zero off-diagonal elements of Ux. For proper uncertainty
propagation it is necessary to preserve this information. One
possibility is to create special objects for the basic quantities
that allow additional fields for correlation information.
LinProp, however, invokes a simple mechanism which avoids
the explicit storage of correlation. The idea behind it is to
reference all dependences to a new layer of basic quantities,
which we call virtual basic quantities. Virtual basic quantities
are uncorrelated and the actual basic quantities are a linear

Metrologia, 49 (2012) 809–815 811

M Zeier et al

combination of them such that the desired correlations and
uncertainties associated with the actual basic quantities are
created. Formally the virtual basic quantities X̃ are mapped
to actual basic quantities X in such a way that the uncertainty
propagates as follows:

Ux = Jx,x̃Ux̃J ′
x,x̃. (4)

Jx,x̃ denotes the derivatives of the actual basic quantities with
respect to the virtual basic quantities. Ux̃ needs to be a diagonal
matrix but the diagonal elements can in principle be freely
chosen. A reasonable choice is to assign an uncertainty of one
to each virtual basic quantity. Ux̃ is thus the identity matrix
and equation (4) reduces to

Ux = Jx,x̃J ′
x,x̃. (5)

Jx,x̃ can therefore be calculated through the factorization of
Ux. Because Ux is in almost all cases a real, symmetric and
positive definite square matrix it is possible to calculate Jx,x̃

with the Cholesky decomposition [18] of Ux. An exception is
the situation with actual basic quantities that are not linearly
independent, i.e. one of the quantities can be represented as a
linear combination of a subset of the other ones, the simplest
case being two quantities that are 100% correlated. In this
case Ux becomes positive semi-definite and the Cholesky
decomposition fails. The occurrence of linear dependence
between basic quantities, however, indicates poor modelling of
the measurement process and as a consequence one should aim
at reducing the number of basic quantities in the measurement
model.

Introducing virtual basic quantities has various advan-
tages. The actual basic quantities become derived quantities
and have thus the same LinProp object structure as the quan-
tities representing intermediate or final results of the calcula-
tion. The explicit storage of uncertainties, or more generally,
covariance or correlation matrices is omitted. As will be seen
in section 4 this makes it possible to have a common storage
and archiving concept for all quantities, independent of being
basic or derived. The virtual basic quantities themselves do not
need to be stored, they just exist as globally unique identifiers
in the lists of dependences of LinProp objects. Referencing to
virtual basic quantities, the linear uncertainty propagation (2)
reduces to

Uz = Jz,x̃J ′
z,x̃. (6)

In the LinProp module all basic quantities are mapped
to virtual basic quantities, independent of being correlated
or not. The mechanism can be illustrated with example (3),
assuming that the basic quantities X1 and X2 are correlated
with a correlation coefficient r . The uncertainty matrix is then

Ux =
(

u2(x1) ru(x1)u(x2)

ru(x1)u(x2) u2(x2)

)
.

One obtains the Jacobian of x with respect to the virtual basic
quantities x̃ with the Cholesky decomposition of Ux according
to (5):

Jx,x̃ =
(

u(x1) 0
ru(x2)

√
1 − r2u(x2)

)
.

Omitting any constants, this leads to the following linear
mapping between virtual and actual basic quantities

X1 = u(x1)X̃1,

X2 = ru(x2)X̃1 +
√

1 − r2u(x2)X̃2.

It should be noted that these relations are only relevant for
the uncertainty propagation and not for the estimates. Virtual
quantities do not need to have estimates, because the estimates
are in the separate field VAL in the LinProp objects of the
derived quantities. x1 and x2 can now be stored as ordinary
LinProp objects. For x1 one obtains the fields

(i) VAL(X1)

(ii) DEPS(X1) =
[
ID

(
X̃1

)]
(iii) SENS(X1) = [u(x1)]

and for x2

(i) VAL(X2)

(ii) DEPS(X2) =
[
ID

(
X̃1

)
ID

(
X̃2

)]

(iii) SENS(X2) =
[
ru(x2)

√
1 − r2u(x2)

]

3.4. Sensitivities with respect to quantities that represent
intermediate results

Derived quantities will contain dependences Jz,x̃ with respect
to the virtual basic quantities. From equation (6) it is obvious
that the vector Jzi,x̃ can be taken directly as the uncertainty
contributions of actual basic quantities to the component zi ,
in the sense that the sum of the components of Jzi,x̃ squared
will add up to the squared total uncertainty associated with zi

according to (6):

u2(zi) = Jzi,x̃J ′
zi,x̃

.

Sometimes, however, it is desirable to calculate
sensitivities and uncertainty contributions with respect to
intermediate results of the calculation. LinProp does not
store any information with respect to quantities representing
intermediate results to keep the memory use as low as
possible. Nevertheless, it provides a mechanism to extract
such information under certain conditions.

Let us assume that the following composite functional
dependence holds:

Z = fZ(Y) Y = fY (X̃) (7)

between virtual basic (X̃) and derived quantities (Y and Z).
In this case it is possible to write the chain rule as a product of
Jacobian matrices

Jz,x̃ = Jz,yJy,x̃. (8)

Subsequently one can right multiply (8) with J ′
y,x̃ and solve

for Jz,y:

Jz,y = Jz,x̃J ′
y,x̃

(
Jy,x̃J ′

y,x̃

)−1

= J ′
z,x̃J ′

y,x̃

(
Uy

)−1
. (9)

812 Metrologia, 49 (2012) 809–815

Metas.UncLib—a measurement uncertainty calculator for advanced problems

With expression (9) it is possible to calculate Jz,y from Jz,x̃

and Jy,x̃. However, there are two potential pitfalls that need
to be considered. Assumption (7) needs to hold. The vector
Y must be complete in the sense that Z can be calculated
as a composite function. In the graphical decomposition of a
model into elementary steps this means that all traces leading
from X to Z need to be intercepted by components of Y .
Metas.UncLib does not check for completeness of Y and it
is the responsibility of the user to verify this. Second, the
inverse of Uy in (9) needs to exist, i.e. Uy needs to be regular.
To satisfy this the matrix Jy,x̃ needs to have full row rank, i.e.
none of the rows can be expressed as a linear combination of the
other rows. Because of the linearization of the measurement
model this means that none of the components of Y is supposed
to have a functional dependence on a subset of the other
components of Y . It is again the user’s responsibility to satisfy
this requirement. In most cases it should not be a problem to
remove such unwanted dependences from Y . In case of any
doubts it is always possible to test the identity

Uz = Jz,x̃J ′
z,x̃ ≡ Jz,yUyJ ′

z,y

that is a necessary condition for the validity of the calculation.
LinProp provides thus a method to calculate sensitivities with
respect to intermediate results according to (9). The method
cannot be applied blindly, it requires the components of the
vector representing the intermediate results Y to be complete
and linearly independent. In most cases these requirements can
be satisfied and the validity of the calculations can be verified.

4. Implementation of storage

To the best of our knowledge there exists no widely accepted
format for storing measurement data with uncorrelated or
correlated uncertainties. A new storage concept for LinProp
objects has therefore been developed. The goal for storage
in Metas.UncLib is to conserve the available information to
the maximum extent possible. The way it is carried out goes
beyond just storing uncertainties and correlations. Storage is
implemented in the Extensible Markup Language (XML) [19]
format. XML is a modern markup language that defines rules
to encode hierarchical data in an expandable and also backward
compatible way. Formally XML encloses the content to
be stored with begin and end tags of the form 〈〉 and 〈/〉.
This is best illustrated with a simple example that shows
how Metas.UncLib stores a single real-valued quantity, see
listing 1.

The important elements in the example are as follows.
The value 1.0 of the quantity is enclosed by the tag Value.
The quantity depends on two virtual basic quantities that
are uniquely identified by the number in the tag Id.The tag
Jacobi contains the derivatives, 0.04 and 0.2, with respect
to the virtual basic quantities. This example shows just the
basic structure of the implementation. Metas.UncLib has
extended abilities to store complex-valued quantities, vectors
and matrices as well.

It is obvious from the example that instead of storing
uncertainties or correlations the contents of the fields of the

<UncNumber>
<Value>1.0</Value>
<Uncertainty>

<Dependences>
<Input>

<Id>cb367fe1-ed4f-4edb-af3e-9bca6a26b54f</Id>
<Jacobi>0.04</Jacobi>

</Input>
<Input>

<Id>bdfaad7a-f3ef-4f33-8c48-5486dcac1573</Id>
<Jacobi>0.2</Jacobi>

</Input>
</Dependences>

</Uncertainty>
</UncNumber>

Listing 1. Example of basic XML structure to store LinProp objects.

LinProp objects are stored. It is therefore possible to restore
the original information to the full extent when LinProp objects
are reloaded. Correlations are thus recognized even between
measurements that are performed at different times and use the
same reference standards or the same equipment. The concept
offers the possibility of serializing complex measurement
systems into several subparts and supports modular uncertainty
evaluation.

The binary format stores the same information as the
XML format. While it lacks human readability and is thus
not recommended as an exchange format, it has the advantage
of compact file size and faster data access and might thus be
used in applications where performance is critical.

5. Performance

Calculations with LinProp objects have an overhead in terms
of memory use and computation time compared to the same
calculations with ordinary numbers, e.g. reals. This overhead
also depends on the number of dependences that are stored
in the LinProp objects. A comparison of computation time
was performed for two different operations: taking the square
root and matrix inversion. In one case the square root of
the individual elements of a complex-valued vector up to
length 1024 was taken. This corresponds to 2048 input
quantities because each complex value is represented by two
elements, either two reals or two LinProp objects, representing
the real and imaginary parts of the complex number. The
second operation was the inverse of a complex-valued matrix
with dimension up to 32 × 32, corresponding again to 2048
input quantities. Figure 2 shows the ratio of computation
time between LinProp objects and ordinary numbers for both
operations versus the number of input quantities. Taking
the square root of LinProp objects takes six to seven times
longer compared with ordinary numbers, independent of the
number of input quantities. However, one finds a linear
dependence between overhead and number of input quantities
for the matrix inverse. The calculation of each element of the
inverted matrix involves all elements of the original matrix.
Taking the square root of a single element of a vector on
the other hand does not involve the other elements of the
vector. This explains the observed scaling behaviour. Memory
requirement and computational burden depend generally on the

Metrologia, 49 (2012) 809–815 813

M Zeier et al

16 32 64 128 256 512 1024 2048
10

0

10
1

10
2

10
3

10
4

Number of Quantities

R
at

io

square root
matrix inverse

Figure 2. Computational performance of LinProp objects for taking
square roots and for matrix inversion. The vertical axes displays the
ratio of computation time between LinProp objects and ordinary
numbers. The horizontal axis displays the number of input
quantities that are involved in the calculations.

number of dependences that need to be managed by the linear
propagation mechanism. Reference [20] describes a method
of numerical uncertainty calculation, also called the Monte
Carlo method, that has become increasingly popular over the
last years. The Monte Carlo method is based on repetitive
calculations with ordinary numbers. Comparing the absolute
ratios in figure 2 with typical Monte Carlo sample sizes of 105

or 106 indicates that in many situations the LinProp module
will outperform numerical uncertainty propagation by several
orders of magnitude. The LinProp module has the further
advantage that it directly provides sensitivity coefficients with
respect to input quantities. This does not mean that LinProp is a
substitute for the Monte Carlo method. Numerical propagation
might still outperform linear uncertainty propagation in terms
of the quality of the result and it is therefore a validation tool
for approximate techniques as used in LinProp. In cases where
linear uncertainty propagation provides satisfactory results,
sensitivity coefficients are desirable and computation time is
an issue, the LinProp module shows good performance.

6. Examples

In the following we will demonstrate with two examples how
the software library can be used from MATLAB. A wrapper
class has been written for that purpose and is available for
download from [21]. MATLAB has a convenient and simple
syntax for the computation with vectors and matrices. The
code listings below correspond to an interactive session in the
MATLAB command window. User input is preceded by a >>,
the other lines are feedback of the application.

6.1. Triangle

This simple example is just to demonstrate the basic use of
the software. The two legs of a right-angled triangle, A and
B are measured and the area and perimeter of the triangle are
calculated. A and B are treated as basic quantities. First the

estimates of the two quantities are declared as LinProp objects
with a = 3 ± 0.03 and b = 4 ± 0.04.

>> a = LinProp(3,0.03)
a = 3 +/- 0.03
>> b = LinProp(4,0.04)
b = 4 +/- 0.04

Now it is possible to calculate with the objects as if they
were ordinary numbers. Area S and perimeter P of the
triangle calculate as S = AB/2 and P = A + B + C with
C =

√
A2 + B2.

>> s = a*b/2
s = (6 +/- 0.0848528)

>> c =sqrt(aˆ2+bˆ2)
c = (5 +/- 0.0367151)

>> p = a+b+c
p = (12 +/- 0.0865332)

It is possible to calculate the correlation between area and
perimeter and the program returns the correlation matrix

>> get_correlation([s p])
ans =

1.0000 0.9806
0.9806 1.0000

Not surprisingly, S and P are strongly correlated as they both
depend on A and B. In any further calculation with S and P

this correlation will be taken into account.

6.2. Equivalent source match

The following example has also been treated in [6]. It
shows how complex-valued quantities are handled. Power
splitters are common three-port devices in rf and microwave
measurement setups. The equivalent source match �

is a quantity of a power splitter that often needs to
be characterized through measurements of complex-valued
scattering parameters Sij with the vector network analyzer.
The measurement model is written as

� = S22 − S12S23

S13
.

Calculating derivatives and propagating uncertainty for such
a measurement model is elaborate because of the complex-
valued quantities involved. With Metas.UncLib the S-
parameters need to be declared first. For example s22 =
0.23 + 0.05I with a standard uncertainty of 0.01 for both real
and imaginary parts. For simplicity it is assumed that real and
imaginary part are uncorrelated. To declare s22 in MATLAB
the second argument to the LinProp constructor needs to be a
2×2 uncertainty matrix.

>> s22 = LinProp(0.23+0.05*1i,diag([0.01ˆ2 0.01ˆ2]))
s22 = (0.23 +/- 0.01) + (0.05 +/- 0.01)i

Similarly the other S-parameters are defined. Ending each
statement with a semicolon is suppressing the output.

>> s12 = LinProp(0.55-0.02*1i,diag([0.01ˆ2 0.01ˆ2]));

>> s23 = LinProp(0.25-0.05*1i,diag([0.01ˆ2 0.01ˆ2]));

>> s13 = LinProp(0.49+0.03*1i,diag([0.01ˆ2 0.01ˆ2]));

814 Metrologia, 49 (2012) 809–815

Metas.UncLib—a measurement uncertainty calculator for advanced problems

With the S-parameters declared this way one can calculate
� easily, propagating the uncertainties automatically in the
background.

>> gamma = s22 - s12*s23/s13

gamma = -(0.0434855 +/- 0.0169279) + (0.133071 +/- 0.0169279)i

It is possible to calculate, e.g., the correlation matrix
between the result and some of the input quantities.

>> R = get_correlation([gamma s22 s12])

R =

1.0000 -0.0000 0.5907 0 -0.2966 -0.0784

-0.0000 1.0000 0 0.5907 0.0784 -0.2966

0.5907 0 1.0000 0 0 0

0 0.5907 0 1.0000 0 0

-0.2966 0.0784 0 0 1.0000 0

-0.0784 -0.2966 0 0 0 1.0000

This results in a 6×6 correlation matrix, treating the three
complex-valued quantities each as a vector of length two with
real and imaginary components.

7. Conclusion

Most other uncertainty software tools that are either freely
or commercially available have the approach of guiding the
user through a measurement process and providing convenient
means for summarizing results and uncertainties in graphical
or tabular form. In contrast, Metas.UncLib concentrates on
the uncertainty propagation for elaborate models. It supports
the multivariate uncertainty evaluation of complex-valued,
vector and matrix quantities in accordance with internationally
acknowledged guidance documents [3, 8]. The complexity of
these often elaborate calculations is conveniently hidden from
the user. It has been further shown that in many situtations
the linear propagation (LinProp) module of the library is up to
several orders of magnitudes faster than numerical uncertainty
propagation with the Monte Carlo method.

The key concept behind Metas.UncLib is to keep track
of dependences to the maximal extent possible. Correlations
are thus correctly taken into account in the calculation of
measurement uncertainties. The approach is complemented by
a storage concept which fully conserves the information about
the dependences. The software thus supports the uncertainty
evaluation of modular expandable measurement systems in an
optimal way. We believe that it is particularly well suited to
be used at national metrology institutes that are required to
maintain traceability chains that eventually span several levels
of reference standards. The working standards that are used
in daily calibration work are often just the spearheads and
underneath there is a system of transfer or primary standards
establishing the traceability to the SI units.

Metas.UncLib is available for free and can be downloaded
from [21].

References

[1] www.metas.ch/vnatools
[2] Ridler N M and Salter M J 2002 An approach to the treatment

of uncertainty in complex S-parameter measurements
Metrologia 39 295–302

[3] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML
2011 Evaluation of Measurement Data—Supplement 2 to
the ‘Guide to the Expression of Uncertainty in
Measurement’—Models with any Number of Output
Quantities JCGM/WG1 102:2011 Available at
www.bipm.org/en/publications/guides/gum.html

[4] en.wikipedia.org/wiki/List of uncertainty
propagation software

[5] Hall B D 2012 Object-oriented software for evaluating
measurement uncertainty Meas. Sci. Technol. submitted

[6] Tsui C M, Yan Y K and Li H W 2012 Software tools for
evaluation of measurement models for complex-valued
quantities in accordance with supplement 2 to the GUM
NCSLI Measure J. Meas. Sci. 7 at press

[7] www.microsoft.com/net
[8] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML

2008 Evaluation of Measurement Data—Guide to the
Expression of Uncertainty in Measurement JCGM/WG1
100:2008 Available at
www.bipm.org/en/publications/guides/gum.html

[9] www.microsoft.com/com
[10] www.mathworks.com
[11] Hall B D 2002 Calculating measurement uncertainty using

automatic differentiation Meas. Sci. Technol. 13 421–7
[12] Hall B D 2003 Calculating measurement uncertainty for

complex valued quantities Meas. Sci. Technol.
14 368–75

[13] Hall B D 2006 Computing uncertainty with uncertain numbers
Metrologia 43 L56–61

[14] Griewank A and Walther A 2008 Evaluating Derivatives,
Principles and Techniques of Algorithmic Differentiation
(Philadelphia, PA: Society for Industrial and Applied
Mathematics)

[15] Mari L 2009 A computational system for uncertainty
propagation of measurement results Measurement
42 844–55

[16] Lira I 2003 Evaluating the Measurement Uncertainty:
Fundamentals and Practical Guidance (Bristol: Institute of
Physics)

[17] ISO/IEC 9834-8:2008 2008 Information Technology—Open
Systems Interconnection—Procedures for the Operation of
OSI Registration Authorities: Generation and Registration
of Universally Unique Identifiers (UUIDs) and their use as
ASN.1 Object Identifier components (Geneva, Switzerland:
ISO)

[18] Golub G H and van Loan C F 1996 Matrix Computations 3rd
edn (Baltimore, MD: Johns Hopkins University Press)

[19] www.w3.org/XML
[20] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML

2008 Evaluation of Measurement Data—Supplement 1 to
the ‘Guide to the Expression of Uncertainty in
Measurement’—Propagation of Distributions Using a
Monte Carlo Method JCGM/WG1 101:2008 Available at
www.bipm.org/en/publications/guides/gum.html

[21] www.metas.ch/unclib

Metrologia, 49 (2012) 809–815 815

http://metas.ch/vnatools
http://dx.doi.org/10.1088/0026-1394/39/3/6
http://bipm.org/en/publications/guides/gum.html
http://en.wikipedia.org/wiki/List_of_uncertainty_propagation_software
http://en.wikipedia.org/wiki/List_of_uncertainty_propagation_software
http://microsoft.com/net
http://bipm.org/en/publications/guides/gum.html
http://microsoft.com/com
http://mathworks.com
http://dx.doi.org/10.1088/0957-0233/14/3/316
http://dx.doi.org/10.1088/0026-1394/43/6/N07
http://dx.doi.org/10.1016/j.measurement.2009.01.011
http://w3.org/XML
http://bipm.org/en/publications/guides/gum.html
http://metas.ch/unclib

	1. Introduction
	2. Features
	3. Implementation of linear uncertainty propagation
	3.1. General formalism and notation
	3.2. LinProp objects
	3.3. Virtual basic inputs
	3.4. Sensitivities with respect to quantities that represent intermediate results

	4. Implementation of storage
	5. Performance
	6. Examples
	6.1. Triangle
	6.2. Equivalent source match

	7. Conclusion
	 References

